\(\int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx\) [1092]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 104 \[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=\frac {b x^2}{2 a \sqrt [4]{a+b x^4}}-\frac {\left (a+b x^4\right )^{3/4}}{2 a x^2}-\frac {\sqrt {b} \sqrt [4]{1+\frac {b x^4}{a}} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{2 \sqrt {a} \sqrt [4]{a+b x^4}} \]

[Out]

1/2*b*x^2/a/(b*x^4+a)^(1/4)-1/2*(b*x^4+a)^(3/4)/a/x^2-1/2*(1+b*x^4/a)^(1/4)*(cos(1/2*arctan(x^2*b^(1/2)/a^(1/2
)))^2)^(1/2)/cos(1/2*arctan(x^2*b^(1/2)/a^(1/2)))*EllipticE(sin(1/2*arctan(x^2*b^(1/2)/a^(1/2))),2^(1/2))*b^(1
/2)/(b*x^4+a)^(1/4)/a^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {281, 331, 235, 233, 202} \[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=-\frac {\sqrt {b} \sqrt [4]{\frac {b x^4}{a}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{2 \sqrt {a} \sqrt [4]{a+b x^4}}+\frac {b x^2}{2 a \sqrt [4]{a+b x^4}}-\frac {\left (a+b x^4\right )^{3/4}}{2 a x^2} \]

[In]

Int[1/(x^3*(a + b*x^4)^(1/4)),x]

[Out]

(b*x^2)/(2*a*(a + b*x^4)^(1/4)) - (a + b*x^4)^(3/4)/(2*a*x^2) - (Sqrt[b]*(1 + (b*x^4)/a)^(1/4)*EllipticE[ArcTa
n[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(2*Sqrt[a]*(a + b*x^4)^(1/4))

Rule 202

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]))*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 233

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(x/(a + b*x^2)^(1/4)), x] - Dist[a, Int[1/(a + b*x^2)^(5
/4), x], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 235

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Dist[(1 + b*(x^2/a))^(1/4)/(a + b*x^2)^(1/4), Int[1/(1 + b*(x^2
/a))^(1/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {1}{x^2 \sqrt [4]{a+b x^2}} \, dx,x,x^2\right ) \\ & = -\frac {\left (a+b x^4\right )^{3/4}}{2 a x^2}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt [4]{a+b x^2}} \, dx,x,x^2\right )}{4 a} \\ & = -\frac {\left (a+b x^4\right )^{3/4}}{2 a x^2}+\frac {\left (b \sqrt [4]{1+\frac {b x^4}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt [4]{1+\frac {b x^2}{a}}} \, dx,x,x^2\right )}{4 a \sqrt [4]{a+b x^4}} \\ & = \frac {b x^2}{2 a \sqrt [4]{a+b x^4}}-\frac {\left (a+b x^4\right )^{3/4}}{2 a x^2}-\frac {\left (b \sqrt [4]{1+\frac {b x^4}{a}}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {b x^2}{a}\right )^{5/4}} \, dx,x,x^2\right )}{4 a \sqrt [4]{a+b x^4}} \\ & = \frac {b x^2}{2 a \sqrt [4]{a+b x^4}}-\frac {\left (a+b x^4\right )^{3/4}}{2 a x^2}-\frac {\sqrt {b} \sqrt [4]{1+\frac {b x^4}{a}} E\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{2 \sqrt {a} \sqrt [4]{a+b x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.49 \[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=-\frac {\sqrt [4]{1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{4},\frac {1}{2},-\frac {b x^4}{a}\right )}{2 x^2 \sqrt [4]{a+b x^4}} \]

[In]

Integrate[1/(x^3*(a + b*x^4)^(1/4)),x]

[Out]

-1/2*((1 + (b*x^4)/a)^(1/4)*Hypergeometric2F1[-1/2, 1/4, 1/2, -((b*x^4)/a)])/(x^2*(a + b*x^4)^(1/4))

Maple [F]

\[\int \frac {1}{x^{3} \left (b \,x^{4}+a \right )^{\frac {1}{4}}}d x\]

[In]

int(1/x^3/(b*x^4+a)^(1/4),x)

[Out]

int(1/x^3/(b*x^4+a)^(1/4),x)

Fricas [F]

\[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {1}{4}} x^{3}} \,d x } \]

[In]

integrate(1/x^3/(b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(3/4)/(b*x^7 + a*x^3), x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.49 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.30 \[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=- \frac {{{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {1}{2} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{2 \sqrt [4]{a} x^{2}} \]

[In]

integrate(1/x**3/(b*x**4+a)**(1/4),x)

[Out]

-hyper((-1/2, 1/4), (1/2,), b*x**4*exp_polar(I*pi)/a)/(2*a**(1/4)*x**2)

Maxima [F]

\[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {1}{4}} x^{3}} \,d x } \]

[In]

integrate(1/x^3/(b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*x^3), x)

Giac [F]

\[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {1}{4}} x^{3}} \,d x } \]

[In]

integrate(1/x^3/(b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*x^3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \sqrt [4]{a+b x^4}} \, dx=\int \frac {1}{x^3\,{\left (b\,x^4+a\right )}^{1/4}} \,d x \]

[In]

int(1/(x^3*(a + b*x^4)^(1/4)),x)

[Out]

int(1/(x^3*(a + b*x^4)^(1/4)), x)